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Abstract

Existing methods for discovering governing equations from data often struggle
with the vast search space of possible equations. Physical inductive biases such as
symmetry are shown to reduce complexity and force symmetrical equations. State-
of-the-art methods enforce symmetry by using symmetry invariants as relevant
terms in symbolic regression. While effective, they assume perfect symmetry and
fail to identify systems with symmetry-breaking effects. To solve this problem,
we propose Symmetry-Breaking Fine-Tuning (SBFT) for genetic programming-
based equation search, which aims to relax the symmetry constraints. Our method
first searches with an emphasis toward invariants to recover a symmetric backbone,
then fine-tunes those results with equal emphasis on invariants and raw variables to
capture symmetry-breaking terms. On benchmark PDEs, SBFT recovers equations
achieving median RMSE reduction of 85.56% and 67.83% relative to standard
and invariant-based genetic programming, respectively, across all experiments.

1 Introduction

Discovering symbolic differential equations from data uncovers the fundamental dynamics behind
complex systems. However, existing methods often struggle with the vast search space of equations,
as the number of candidate expressions grows combinatorially with the number of variables and
operators (Udrescu & Tegmark, [2020; [Udrescu et al., 2020).

A common approach in equation discovery is to introduce inductive biases from physical laws.
Specifically, various works leverage symmetry constraints to improve the accuracy and efficiency of
equation discovery. However, applications of such methods have been limited. For example, [Udrescu
& Tegmark| (2020) focus on algebraic expression discovery, and |Otto et al.|(2023); Yang et al.[(2024)
study Ordinary Differential Equation (ODE) systems. Extending these ideas to more complex systems,
such as Partial Differential Equations (PDEs), has proven to be challenging. PDE-focused approaches
often only encourage symmetry — using data augmentation (Brandstetter et al.,|2022), regularization
terms (Akhound-Sadegh et al.l 2023)), or self-supervised learning (Mialon et al.| |2023)) — but these
“soft” constraints only guide the learning process, and lack the strength to ensure strict mathematical
symmetry. Direct enforcement methods exist but typically handle only narrow classes of symmetries
and systems (Wang et al., 2021} [Otto et al., 2023} |Yang et al., 2024). More recently, [Yang et al.
(2025) used symmetry invariants in symbolic regression for PDE discovery, leveraging the fact that
any differential equation with a Lie group symmetry can be expressed entirely in terms of the group
invariants. Treating invariants as "atomic entities" restricts the search space to symmetry-respecting
equations, reducing search complexity and improving accuracy in both sparse regression and genetic
programming (GP) on symmetric PDEs.

However, many real-world systems do not obey symmetry perfectly. Physical processes often contain
symmetry-breaking terms arising from factors such as external forces. In these cases, invariant-
based methods cannot fully capture the system’s behavior, since the invariant framework excludes
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terms that explicitly violate the symmetry. To address these shortcomings, we propose Symmetry-
Breaking Fine-Tuning (SBFT), depicted in Figure[I} Our approach builds on invariant-based genetic
programming for discovering governing equations, but extends it to handle systems with imperfect
symmetries. SBFT first biases the search toward the symmetry-respecting invariants, building a
symmetric backbone, then fine-tunes with equal weighting of invariants and raw variables, allowing
symmetry-breaking terms to emerge.
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Figure 1: Proposed Symmetry-Breaking Fine-Tuning pipeline.

2 Methodology

Problem Definition Differential equation discovery seeks to find the governing mathematical laws
of a system directly from observational data. Given measurements of system variables and their
derivatives over time or space, the goal is to recover a symbolic equation that accurately captures
the underlying dynamics of the system. Such methods aim to discover symbolic PDEs in the form
F(x,u™) = 0, where x denotes the independent variables, u(™) consists of the dependent variable
v and all of its up-to-nth order partial derivatives.

2.1 Invariant-Based Equation Discovery

We first briefly review the approach in (Yang et al.l 2025), which uses symmetry invariants to embed
physical principles directly into symbolic regression. The core idea is that any differential equation
that admits a symmetry of a Lie group can be rewritten entirely in terms of the invariants of that
group: quantities formed from the system’s variables and derivatives that remain unchanged under
the transformations of the symmetry.

By treating these invariants as "atomic entities", two things are ensured: 1. Every equation proposed
using invariants automatically respects the specified symmetry; 2. The search space is dramatically
reduced since symmetry violating equations are not considered. In practice, the approach works as
follows: the infinitesimal generators of the symmetry group are used to construct the differential
invariants up to the desired order. These invariants are then evaluated on the data set and used as the
feature library for symbolic regression. Genetic programming or sparse regression algorithms can
then search over this restricted library to propose candidate equations.

Yang et al.| (2025) has shown that this approach consistently produces more accurate results for
systems with exact symmetry. In a strictly symmetric setting, invariants lead to faster convergence,
cleaner equations, and lower reconstruction error than using raw variables alone. However, this
reliance on exact symmetry fails in systems with symmetry-breaking effects, motivating our approach.

2.2 Symmetry-Breaking Fine-Tuning

In this work, we focus on genetic programming as the base algorithm for equation discovery, given
its broader and more flexible search space. We introduce the Symmetry-Breaking Fine-Tuning
(SBFT) pipeline, which discovers PDEs in systems with imperfect symmetry by operating on a
combined variable library of differential invariants of the prescribed symmetry group and the original
jet variables. This unified representation preserves the symmetric structure of the system while
admitting potential symmetry-breaking terms. As in standard symbolic regression, one variable is
chosen as the left-hand side; to avoid trivial reconstructions (i.e. an invariant is reconstructed directly



from raw variables), we remove a specified subset of variables depending on the system from the
available library. For example, if the LHS target is invariant L = u, + u,,, then at least one of its
defining variables ., or u,, is removed. The algorithm is described in full in Algorithm|T]

Algorithm 1 Symmetry-Breaking Fine-Tuning

Require: PDE order 7, dataset {z* = (x’, (u(™)") € M} N5 base SR algorithm S (e.g., PySR),
symmetry generators 3 = {v%

Compute invariants ', ..., 7" from B up to order n

Form the combined variable library ® = {regular variables} U {invariants} and dataset X¢
Remove any variables in the "delete list" to avoid trivial solutions

for each target equation (and specified LHS) do

Set current LHS variable y (target) and RHS feature matrix X é_y)
Phase 1: Invariant-biased search
Run S on (Xg ¥, y) with variable complexities: ¢(v) = 1 if v is invariant, else « (default
a = b). Save all discovered candidate equations as symmetric backbone: this set of candidates
is called the Phase 1 Hall of Fame (HOF).
8:  Phase 2: Symmetry-breaking refinement
9:  Set all variable complexities to 1 (equal weighting) and warm-start S with Phase 1 HOF
10:  Run S to refine candidates, allowing regular variables to form symmetry-breaking terms,
which are not constrained by symmetry. Save best-scoring equation
11: end for
12: Return final best-scoring equation(s) from Phase 2 for all targets
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3 Experiments

In this section, we evaluate the performance of our proposed SBFT pipeline. We present the core
results, demonstrating that SBFT consistently discovers equations with lower error than standard
genetic programming and a pure symmetry-invariant GP approach.

3.1 Data Generation

We consider the following systems of PDEs with symmetry-breaking and invariants obtained from
Yang et al.| (2025):

Darcy Flow. We consider the steady state 2D Darcy flow equation from [Takamoto et al.| (2022)) with
spatially varying viscosity a(x, y) and a constant force term:

—V(a(z,y)Vu(z,y)) =1 M

This equation admits an SO(2) rotation symmetry v = y0, — x0,. In our experiment, we use

the following complete set of 2nd-order rotational invariants calculated from [Yang et al.| (2025):

{%(xz +Y2), Uy By — YU, Ty + YUy, U + Uyyyy UZ, + 2ug26y + u?;y’ T2 Uy + Y2 Uy + 20YUgy

We consider the following asymmetric viscosity terms: ay(z,y) = e~ 4@ +v")+01% and gy (2, y) =
1.1 —2(2? + y?) + 0.2z.

To prevent the trivial case where SBFT simply recovers an invariant as equal to its defining expression
in terms of the regular variables (e.g., (2 = zu, + yu,), yielding no genuine discovery, we remove
certain variables depending on the dataset.

For Darcy Flow, we remove {uyg, tyy } for a; and {y, u,} for as.
Reaction-Diffusion. We consider the following system of PDEs from |Champion et al.|(2019):

uy = diV3u + (1 — A%u + A%

v = da V3 — A%u+ (1 — A% 2)
where A2 = u? +v2and d; = dy = 0.1.

The symmetry invariants are calculated from [Yang et al.| (2025). The system exhibits rotational
symmetry in the phase space: v = ud, — vd,. The ordinary invariants are {t, z,y,u? + v?}. The



higher-order invariants are {u - u,, ut - u,}, where u = (u,v)? and x is any multi-index of ¢, x
and y. Expanding these inner products explicitly yields:

_ L —
u-u, =uuy +Vvy, u-u, = —vUuy +uvy,

We introduce two symmetry-breaking variants: (i) unequal diffusivities, do = dy + € with e = 0.03;
(ii) external forcing, adding —ev and —eu with € = 0.15 to the RHS of u; and v; respectively. For
SBFT, we remove {u;, v;} in both cases.

2D Heat. Consider the heat equation given by u; = (uze + uyy) + f(z,y). In our experi-
ments, we use « = 0.01 and two types of source terms: f(z,y) = exp(—2z?) and f(z,y) =
exp (—z% — 0.9y?). We will use the same set of invariants as Darcy Flow. This data was generated
by an explicit finite-difference solver, with an initial condition of exp (—50(z — 0.5)% + (y — 0.5)?).
No variable deletion from SBFT was necessary for this dataset.

3.2 Experimental Setup

We compare the results of SBFT with two key baselines: Standard Genetic Programming searches
equations using raw variables and their derivatives(e.g. u, Uz, Uyy, - . . ) Without any built-in knowl-
edge of symmetry; Invariant-Based Genetic Programming uses a special set of symmetry invariants
such that any equation built from these invariants is guaranteed to respect the system’s symmetry. We
selected PySR and invariant-based PySR as baselines as they share the same genetic programming
framework, isolating the effect of symmetry treatment (Cranmer;, 2023; [Yang et al., 2025). In contrast,
alternative approaches such as Al Feynman rely on different pipelines and additional priors, while
SINDy operates over a different equation space and is therefore not a directly comparable baseline
(Udrescu & Tegmark), 2020). Specific implementation details are shown below:

Table 1: Hyperparameters passed to PySR |Cranmer| (2023) for each dataset, consistent across trials.

Dataset Populations Max Equation Size Iterations Population Size Fraction Replaced
Darcy Flow 127 25 200 64 0.1
Reaction-Diffusion 127 25 400 64 0.5

Heat 2D 127 25 50 27 0.00036

Experiments are run on symmetry-breaking datasets, reporting the mean Root Mean Squared Error
(RMSE) over three independent trials, with and without normalization, trained on 10,000 samples.
We apply normalization by scaling each variable using z-score standardization before passing the
data to PySR, and then denormalizing the predicted outputs back to the original scale. All methods
use identical hyperparameters and randomized seeds, with variable weighting o = 5 . To ensure fair
comparison, SBFT’s two stages each run for half the baseline iteration count.

3.3 Experimental Results

Under identical experimental settings, SBFT consistently achieves lower RMSE than the baselines,
which translates to more practically useful governing equations. On average, SBFT discovered equa-
tions with 85.56% and 67.83% lower median RMSE than regular and invariant mode respectively
across all datasets. Table 2 reports the full results: normalization improves performance consistently,
and aside from a single outlier, SBFT markedly outperforms all baselines.

Table 2: Experimental results across normalization schemes, measured by RMSE (rounded).

Regular Invariant SBFT
No Norm. Norm. No Norm. Norm. No Norm. Norm.
Darcy Flow: a1 (z,y) 1.0x107% 69x107% 1.8x107* 3.0x1072 7.7x10°* 79x10°*
Darcy Flow: ax(z,y) 1.8x107%2 1.0x107? 1.3x107* 31x1072 89x107* 21x10°%
Reac-Diff: Unequal Diff. 32x107% 47x107%2 22x107%2 20x107% 14x107% 7.7x1073
Reac-Diff: External Forcing 40x1072 56x1072 60x1072 73x107%2 1.6x1072 6.9x10"3
Heat 2D: f(z) = exp(—2z?) 21x107" 7.8x1072 1.6x107' 58x107% 78x107%2 24x1073

Heat 2D: f(z) = exp(—2? — 0.9y%) 1.3 x107' 41x1072 1.8x107' 23x107? 1.6x10"% 1.6x 1072




Multi-Dataset Comparison: Normalized
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Figure 2: SBFT vs baselines across various symmetry-breaking datasets, with normalization.

Although SBFT does not exactly recover the ground truth equation, it makes substantial progress
toward the correct form. Baseline methods, by contrast, often fail to accommodate the symmetry-
breaking term and produce expressions that deviate markedly from the target structure. Some equation
samples are provided in Table[3|below:

Table 3: Equation samples for Darcy Flow and Heat 2D datasets (without normalization).

Method

Darcy Flow a1 (z,y) (Rounded to one significant figure)

Equation

Ground Truth (Regular) 0 = Uqg + Uyy — 8(TUy + yuy) + 0.1ug + exp( — 4(a* + 3?)? + 0.1z)

Ground Truth (Invariant) 0 = L — 8¢z + 0.1ug + exp( — 4R? + 0.1x)

Regular 0 = 1.0 uug exp(—0.2uyy ) + 1.0 ug exp(ugs — 0.2uyy) + 0.3uy exp(—0.2uyy ) + 0.6z
Invariant 0 =0.03L + 0.5R%exp(1.4R) + 1.0 uexp(1.4R) — 0.5(> — 0.1

SBFT 0=0.1L + 0.1u, — 1.0z + 0.1exp(4.0R — 0.1z)

Heat 2D f(x) = exp(—2?) (Rounded to one sig. figure)
Ground Truth (Regular) 0 = u; — 0.01ug, — 0.01uy, + exp(—2?)
Ground Truth (Invariant) 0 = u; — 0.01L + exp(—=x2)

Regular 0 =0.7u; + 0.5exp(z) — 1.0
Invariant 0 = —Ru? + u; — exp(0.02L + 0.00503 + ()
SBFT 0= —0.01L + u; — 0.8 exp(—x — x?)

4 Conclusion

In this work, we introduce the Symmetry-Breaking Fine-Tuning pipeline, a two-stage framework
that extends invariant-based discovery to systems with imperfect symmetries. On benchmark PDE:s,
SBFT consistently outperforms standard and invariant-based GP under identical settings, discovering
lower-error equations with closer form that are more useful in practice. While exact discovery
remains challenging, SBFT makes meaningful progress, recovering governing equations that align
more closely with underlying dynamics than baseline methods.
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